
Computer Science June 11, 2015

Computer Science C, Degree Project, 15 Credits

Baking And Compression
For

Dynamic Lighting Data

Tom Olsson
Computer Engineering Programme, 180 Credits

Örebro University, Sweden, Spring 2015

Examiner:
Martin Magnusson
Supervisor:
Daniel Canelhas

Industry supervisors:
Daniel Johansson
Mikael Uddholm

Torbjörn Söderman

Örebro Universitet
Institutionen för

naturvetenskap och teknik
701 82 Örebro

Örebro University
School of Science and
Technology
SE-701 82 Örebro, SWEDEN

Computer Science June 11, 2015

Copyright © Tom Olsson 2015

This work may be used, reproduced and spread freely for non-commercial purposes.
This work may not be sold or used commercially without permission from the author.

This copyright notice must be reproduced with the full material, or, if only part of
the material is used, a full reference must be given.

Proprietary tools, techniques or software mentioned herein are the intellectual prop-

erty of their respective owners, and are referenced in here for education and complete-

ness.

Abstract

This report describes the development and prototype implementation of
a method for baking and compression of lightmaps, in an environment
with dynamic lights. The method described can achieve more than 95 %
compression efficiency, and can be easily tuned with only two parameters.
Even without specific tuning, the prototype consistently achieves signal-
to-noise ratios above 30 dB, reaching 60 dB in some scenes.

Compression is achieved in four steps, first by using image segmentation
and function approximation to reduce the data-size and then using a
predictive quantizer approach based on the PNG-filters together with an
open-source compression algorithm. Both compression and decompres-
sion can be adapted for asynchronous and multi-threaded execution.

Sammanfattning

Denna report beskriver utvecklingen av en metod för bakning och
komprimering av dynamiska ljuskartor, i renderingar med dynamiska
ljuskällor. Metoden uppn̊ar mer än 95 % storleksreduktion, och kan
enkelt anpassas för olika ljuskartor med tv̊a variabler. Även utan speci-
fika anpassningar uppn̊as en signal-to-noise niv̊a över 30 dB, och närmare
60 dB i vissa scener.

Komprimering sker i fyra steg, först genom bildsegmentering och linjär
funktionsapproximation, följt av predictive quantization och en vanlig
komprimeringsalgorithm. B̊ade komprimering och dekomprimering kan
anpassas för asynkron och flertr̊adig exekvering.

i

Computer Science June 11, 2015

ii

Acknowledgement

This report is original and unpublished by work exclusively performed
by the author, T. Olsson.

A big thanks to DICE for the internship, and to all fantastic colleagues
who made my ten weeks fantastic. Special mentions also for my super-
visors Daniel Johansson, Mikael Uddholm, and Torbjörn Söderman at
DICE for their great encouragement and enthusiasm, and pushing me
towards excellence. A special thanks also to Jan Schmidt for his in-
put and domain knowledge, without which this would have been much
harder.

Finally, a great thanks to my university supervisor Daniel Canelhas, for
his great knowledge, enthusiasm and interest during this project.

iii

Computer Science June 11, 2015

iv

Contents

Abstract i

Sammanfattning i

Acknowledgement iii

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 Background . 1
1.2 Project . 2
1.3 Goals . 3

1.3.1 Requirements . 3

2 Background 5
2.1 Lighting in games . 5
2.2 Compression . 7
2.3 Definitions . 8

3 Methodology and tools 9
3.1 Methods . 9

3.1.1 Literature review: Compression 10
3.1.2 Literature review: Image segmentation and data

structures . 11
3.2 Tools . 11
3.3 Other resources . 12

3.3.1 Software . 12

4 Data and system 13
4.1 System . 13

4.1.1 Client capabilities 14
4.1.2 Server capabilities 14

4.2 Data structure . 14
4.2.1 Irradiance . 14

v

Computer Science June 11, 2015

4.2.2 Irradiance direction 15
4.2.3 Probe data . 16
4.2.4 Data summary 17

4.3 The data in detail . 17
4.4 Compression requirements 18

4.4.1 Target compression ratio 18

5 Literature review: Compression algorithms 21
5.1 Overview . 21

5.1.1 Entropy encoding 22
5.1.2 Dictionary coding 24
5.1.3 Other algorithms 25
5.1.4 Video and image compression algorithms 26

6 Literature review: Image segmentation and data struc-
tures 27
6.1 Image segmentation . 27
6.2 Data structures . 29

6.2.1 Tree structures 30
6.2.2 Arrays, lists and maps 31

6.3 File structure . 31

7 Implementation 33
7.1 Compression algorithm selection 33

7.1.1 Existing implementations and relative gains . . . 35
7.2 Image segmentation algorithm and data structure selection 35
7.3 The full pipeline . 38
7.4 K-D-tree . 38

7.4.1 Image segmentation 38
7.4.2 Temporal segmentation 41
7.4.3 The heuristic function 45

7.5 Compression . 45
7.5.1 PNG . 45
7.5.2 LZ4 . 46

7.6 File format . 46
7.7 Decompression of a frame 47

8 Results 49
8.1 The prototype . 49

8.1.1 Execution speed 49
8.1.2 Compression efficiency 50

8.2 Visual and quantitative errors 50

9 Discussion 55
9.1 Compliance with the project requirements 55
9.2 Special results and conclusions 56

vi

Computer Science June 11, 2015

9.3 Project development . 56
9.4 Reflection on own learning 56

Bibliography XI

vii

List of Figures

4.1 Data flow from editor to runtime 13
4.2 Temporal view of irradiance 15
4.3 Flattened view of temporal data 16
4.4 Temporal view of irradiance direction per channel 19
4.5 Spatial-Temporal pixel emptiness 20
4.6 Spatial and cumulative emptiness 20

5.1 Arithmetic encoding . 23

6.1 OOD and DOD memory layouts 30

7.1 Original proposed compression pipeline 34
7.2 Updated proposed compression pipeline 37
7.3 Final compression pipeline 38
7.4 Initial segmentation . 40
7.5 Spatially segmented image 41
7.6 Example visualisation of temporal segmentation algorithm 42
7.7 Temporal segmentation deviation graph 44
7.8 Temporal segmentation 3D-visualisation 44
7.9 References in PNG filters 46

8.1 Visual comparison tool 51
8.2 Error graph . 53
8.3 Temporal segmentation, data-set 3 54

viii

List of Tables

4.1 Summary of input data 17

7.1 Spatial segmentation tree 40
7.2 File header structure . 47

8.1 Compression efficiency 50

ix

Computer Science June 11, 2015

x

Chapter 1

Introduction

1.1 Background

Many modern games use a multistage rendering pipeline where rendering
is done on both the graphics processing unit (GPU) and the central
processing unit (CPU) simultaneously. In rendering technology the GPU
is often referred to as a server, while the CPU is referred to as a clientI. I when using OpenCL

and CUDA the server
is called device and the
client is called host

With careful planning this separation allows simultaneous and partially
asynchronous execution, as long as both client and server finish at the
same time. If either takes too long, there will be freezes in the game
resulting in a lower framerate. Modern console games are often optimised
to run at either 30 or 60 FPS (frames per second), which gives slots
that are either 33 ms or 17 ms long. This time is then broken down
into separate parts that need to occur during execution, e g animation,
simulation, rendering, or loading.

These time constraints can be met by baking parts of the data during
production to minimise processing needs, which comes at the cost of re-
duced dynamics in the rendering or large game sizes. In modern games,
more and more game elements such as lights, buildings, and props (scene
objects) are expected to be dynamic. Destructible environments for ex-
ample, have gone from being a gimmick or very limited feature in older
games to being a core gameplay element of modern first-person shoot-
ers. Because of this the possibilities for baking decrease as the number
of scene permutations increase. However, the cost of simulating this dy-
namic game content eventually reaches the point where the content is
limited by execution time. This breakpoint is easier to control on con-
soles as every user has the same hardware, while computers are more
diverse.

However, some objects have a very deterministic dynamic behaviour, or
are subject to very slow changes. This type of object can be dynamic over

1

Computer Science June 11, 2015

the course of a gaming session or an hour, but nearly identical for many
consecutive frames or even several hundred frames. This property means
that many calculations are done needlessly while it is hard to optimise
performance based on ‘this code will sometimes execute’.

One example of this is lighting data, in so called physically based ren-
dering engines. These engines strive to achieve realistic results by basing
lighting simulations on empirical formulae. This means that an in-game
sun may seem static from one minute to the next, but over the course
of an in-game hour it will have visibly repositioned itself. Moreover, this
rate of change is likely to be globally large in the morning and evening
when the sun is low, and globally small during midday and midnight.

1.2 Project

The purpose of this project was to solve the problem presented in sec-
tion 1.1 on the preceding page for the lighting data mentioned. The
general goal was to analyse the data and available compression methods,
and then propose a baking method that allows both good quality and
dynamic content. The challenge is to create data small enough to be dis-
tributed in a finished product, such as on a disc or via digital distribution,
as well as used when rendering in the game.

There is also a second part to the project of investigating how the com-
pression tool can fit with the existing systems and pipelines used to create
and run the game.

This also made the goals hard to define, as both “good quality and dy-
namic content” and “small enough” were not only relative to the original
uncompressed data but also also to the game as a whole. An integral
part of the project was therefore development of the goals.

The project was defined as three different stages: defining the data, re-
search about compression techniques optimal for the data, and finally
implementation. The stages between these points then became natural
points for updating the goals and the direction of the project.

The first stage defining the data can be found in chapter 4 on page 13,
which presents the data to be compressed and analyses it in various
ways. This chapter ends with a definition of the requirements for the
compression pipeline.

The second stage is found in chapters 5-6, which describe compression
algorithms as well data manipulation and structures.

The first part of the research was focused on compression algorithms
found in chapter 5 on page 21 and the results of this research are shown

2

Computer Science June 11, 2015

in section 7.1 on page 33. This was proposed on a meeting with the
industry supervisors, but it was decided that more effective compression
methods were needed.

The second part of the research took place because of this decision, and
is shown in chapter 6 on page 27. This part focused on the data manipu-
lation and data structures. The results from this part are then shown in
section 7.2 on page 35. This proposal was shown on a meeting as before,
and it was decided to continue with implementation of the pipeline.

The implementation of the compression is described after the two pro-
posals in chapter 7 on page 33, and describes the implementation, math-
ematics, as well as tuning of the different compression stages.

The results of the implementation are described in chapter 8 on page 49.
It includes measurements of compression efficiency and execution time.
It also contains visual and quantitative measurements of the loss from
the compression.

Finally, chapter 9 on page 55 discusses the results in relation to the goals,
as well as the evolution of the project.

1.3 Goals

This project had two goals based on the problem presented above.

The first goal was to investigate, compare and propose suitable compres-
sion methods based on data structure and size, as well as performance
and quality requirements.

This goal was tracked and updated in regular meetings with the indus-
try supervisors, and fulfilled when a satisfactory compression method
was found. The preliminary deadline was at the midpoint of the thesis
project, but was delayed with the addition of the second research period.

The second goal was to show how this can be implemented in the ex-
isting pipeline, as well as to produce a prototype to demonstrate the
compression capabilities.

This goal was fulfilled by the end of the thesis project but was reduced
in scope in proportion to the increased scope of the search.

1.3.1 Requirements

At the end of the thesis project the following was shown:

� The available compression techniques and their benefits and draw-
backs

3

Computer Science June 11, 2015

� Possible compression techniques specific for this data

� A working prototype tool

4

Chapter 2

Background

This chapter gives a short background both to lighting in games
and to compression methods. The lighting technology will only
be briefly mentioned here, while a much deeper description of
compression technology can be found in chapter 5.

This chapter also includes a list of common abbreviations and
domain-specific expressions at the end.

2.1 Lighting in games

A very important part of the visual aesthetics in a game is the lighting.
Though serving a very practical purpose of adding depth to a rendering,
it has also been noted that the lighting in a game environment even
can influence the users’ performance [1]. It is therefore important as a
developer or artist to take care when designing lighting in a game.

There are two distinct types of lighting used in games referred to as di-
rect and indirect lighting. These are most clearly defined as each others
opposite: direct lighting has not undergone diffuse reflection, while in-
direct lighting has done so. A diffuse (also called matte) surface has
the property of dispersing parallel incoming light into different and un-
related directions. Sometimes, global illumination is used in place of
indirect lighting but can also mean a combination of direct and indirect
lighting. In modern games both indirect and direct lighting is used used
to create realistic environments.

The classic example of lighting simulation is the rendering equation, a
physically based rendering model which which was based on the con-
servation of energy [2, 3]. This equation is still the basis for realistic
rendering models. However, it is also very expensive to compute and it

5

Computer Science June 11, 2015

is therefore simplified in various ways to make it possible to calculate in
real-time.

The first rendering algorithm used commonly in games was the the Phong
shading model, which was later modified to create the much faster Blinn-
Phong model [4, 5]. This model defines three parts of lighting: specular,
diffuse, and ambient. The specular component is the reflection directly
from light source to eye via the surface, the diffuse term is direct il-
lumination from light to surface, and the ambient term approximates
surface-to-surface reflection. This model completely ignores both energy
and bouncing light, making it much faster than the rendering equation.

A more modern approach could instead combine a Phong-Blinn shading
model with ray tracing, sampled lights, or cubemapping to simulate actual
lighting that travels from sources and between surfaces, to calculate the
illumination for a point. These approaches are more directly linked to
the rendering equation, and often use irradiance as a measurement of
illumination strength. Irradiance is a measure of the incoming energy
over an area, and the emitted energy is called radiance and may be used
to define realistic light sources.

While the traditional lighting can be computed with relatively low cost
on a GPU (graphics processing unit), the indirect lighting is often based
on mathematical models not easily integrated into a rendering pipeline
[6]. On a CPU on the other hand they are easy to implement but instead
end up being expensive to do in real-time. They are therefore further
simplified to use partial solutions, integration or baking [7].

One baking approach is called lightmapping. It is a technique used for
storing lighting data for objects, and allows a developer to precompute
illumination data before execution in order to save computation cycles
when running the program. This technique became widely known when
used by id Software’s Quake. The general drawback of lightmaps however
is that they are static, and hence cannot be used to illuminate dynamic
objects nor does classic lightmapping allow moving lights. Though the
word mapping implies the use of textures, there is no strict definition:
generally any technique for precomputing lighting data can be referred
to as lightmapping.

All the techniques discussed above however fail or become very expensive
in one situation: dynamic objects. One solution to this problem is the
usage of lighting probes, which were originally developed for illuminating
static objects [8]. This approach uses spherical harmonics to sample
incoming light at preset points, and then interpolating between these
for intermediate positions to illuminate moving objects. These probes
can be precomputed similar to how illumination data is precomputed for
static objects, and can save a lot of time in real-time execution [9] .

6

Computer Science June 11, 2015

2.2 Compression

Compression is an operation that can be performed for data in order to
reduce the storage size. The algorithms for compression can be separated
as being either lossy or lossless. This denotes if the original data can
be reconstructed perfectly from the compressed file (without loss, i.e.
lossless), or if some information will be lost [10]. As a general rule,
a lossy algorithm will be able to reduce the size of a file more than
a computationally similar lossless algorithm. For video and audio, a
compression algorithm is often referred to as a codec.

Lossy algorithms are domain specific and uses research related to that
domain in order to minimise the perceived loss [10]. In the case of au-
dio compression this might be removing inaudible parts, while a video
approach might downsample every other frame and upsample those in
real-time instead, for example by doing trilinear interpolation.

Lossless algorithms are more general, and the data-specific differences
between algorithms are based on whether an algorithm operates on the
bit- or byte-level. The lossless algorithms are grouped primarily into two
categories, entropy coding and dictionary coding.

Entropy coding algorithms attempt to reduce the bit-size of common un-
compressed symbolsI by using probabilities for occurrence. Then the I a piece of data, such

as one or several bytesalgorithm assigns short bit-sequences to symbols with high occurrence,
and opposite for those with low probability [11]. These algorithms com-
monly use prefix-free coding, which means that no encoded sequence is
the beginning of another sequence. For example, the alphabet [0, 10,
110, 111] allows a bit sequence to unambiguously identify a compressed
symbol, under the limitation of being at most 3 bits long, or ending with
a 0.

Dictionary coding algorithms compress by attempting to create sequences
of repeated symbols which are referenced as needed when parsing the
file. These words are stored in a dictionary, and when a match is made
a reference to the dictionary is stored instead [12, 13]. This allows a
commonly occurring sequence to be represented by only a few bits when
compressed. Common implementations use static dictionaries, sampled
dictionaries, sliding, or dynamic dictionaries depending on the type of
data and size.

There are also a few other algorithms that do not fit in these categories
that use differential, sorting or counting algorithms to compress the data
[14].

7

Computer Science June 11, 2015

2.3 Definitions

Unless otherwise noted or obviously inferred from context, these are com-
mon terms and their definitions in this report.

Atlas A collection of textures

Bake Compute and save before execution

BPC Bits Per Character

Chart A texture inside an atlas

Client side Execution on the CPU

CPU Central Processing Unit

DOD Data-oriented design

FPS Frames Per Second

GPU Graphics Processing Unit

Irradiance Incoming light intensity, energy

LSB Least significant bit

MSB Most significant bit

OOD Object-oriented design

Radiance Outgoing light intensity, energy

Rasteriser Software and/or hardware that transforms game
objects from world-space to screen-space

Renderer Software and/or hardware that makes game ob-
jects appear on the screen

Server side Execution on the GPU

Symbol An abstraction of the input data: for example a
character or pixel (compare to word)

Word One or more bytes, in the context of data

8

Chapter 3

Methodology and tools

This chapter describes the methodology and tools used during
the thesis project, as well as other resources of importance.

3.1 Methods

This thesis project was conducted in two main phases, which can be seen
below.

Part 1: Research

� Define the characteristics of the lighting data

� Research available compression techniques

� Research possible methods for data-specific compression

Part 2: Software design

� Research integration requirements to fit the prototype into the
existing development environment

� Define and implement the model

� Implementation of the prototype

The whole project followed a SCRUM-methodology with daily scrum
meetings, two-week sprints and a continously updated backlog and sprint-
log.

The research was conducted using a literature review approach to get
a good overview of the two areas involved. The literature review was
conducted in three steps, with each step narrowing the search subject
towards more relevant information.

9

Computer Science June 11, 2015

Originally, the algorithm selection was intended to be done using a
decision-matrix approach. However, many of the algorithm have such
minute differences that they are hard to weigh against each other. In-
stead, the algorithm selection was done using an elimination method to
narrow the choices. The final choice was then made from this smaller
set of algorithms using a logical reasoning method.

The implementation was done using a SCRUM-programming method,
by iteratively adding features in a controlled manner. Where it was
applicable unit tests were also added to make sure the functionality was
not broken in any step.

Finally, the results were measured both using visual inspection of a
difference image, as well as using the signal-to-noise ratio and RMSE-
measurements.

3.1.1 Literature review: Compression

The literature review was conducted in three general steps of searching.
The first step was the general step. This meant finding very general
sources to establish a knowledge base for further search as well as finding
more keywords.

Common keywords in this step were: overview, review, introduction,
compression, lossless, lossy, algorithm.

The second step was the weeding step. The purpose of this step was to
take all the new keywords and information from the first step and use
it to find current and accurate research, as well as to find compression
algorithms and approaches that were relevant for this project.

Common keywords in this step were: Lempel-Ziv, LZ78, LZ77, entropy,
dictionary, encoding, video compression, efficient compression, fast com-
pression, fast decompression, Huffman, arithmetic, DEFLATE, maxi-
mum compression, comparison.

The third step was the detailing step. The purpose of this step was
to find primary sources and implementation details for the results from
the previous step, and forms the bulk of the review. Some time was
also spent trying to find modern work based on the well-documented
algorithms. Most of the keywords in this step were the same as in the
previous step, but a few more were added and the search terms were
formulated to be more precise.

Added keywords in this step were: benchmark, numerical system,
adapted, improved, faster, better, harder, hardware-accelerated.

Searching was done using four different search engines, in order of im-
portance: Scopus, IEEE Xplore, Google Scholar, and Google. Though

10

Computer Science June 11, 2015

the first two were used primarily, I employed a strategy of chaining these
together by starting with Google to find references to articles, techniques
and algorithms. Then these were traced backwards through the chain of
importance until a reliable and/or original source was found.

In the cases where it was relevant wild-card searches were used with the
stem of words, such as searching for “adapt” instead of “adapted”. As
many keywords can also work as both as an adjective, verb or noun these
forms were also used for searches.

3.1.2 Literature review: Image segmentation and
data structures

The extended literature review was based on the methodology as the
compression literature review, with the same three general steps. As a
lot of detail were already described in the first part, there was a more
restrictive selection of topics and sources.

The first step was used to find information about general data structures
and compressor optimization, as well as data description and transforma-
tion. Common keywords were: voxelisation, vectorisation, data transfor-
mation, data optimisation, sparse coding, file structure, data structure.

The second step was focused on techniques for data identification and
data separation as the structuring was deemed a by-product from the
technique used. Common keywords used were: k-d tree, spanning trees,
octree, quadtree, image graphs, image segmentation, foreground segmen-
tation, object identification, blocking, patching.

The third step was used to combine the information from the first and
second step to both define data structure and storage, as well as methods
to generate the same structure. No more keywords were used in this step,
but keywords both from this extended review and the previous review
were used to search for precise results.

3.2 Tools

Most of the work was done inside the existing development environment
at DICE using their proprietary tools and pipelines. The primary lan-
guage for development was originally C++, with some C#.

The final prototype for the compression was created using Python to
allow faster iterations. Various non-canonical Python packages were used
such as VTK, wxPython, and Mayavi.

11

Computer Science June 11, 2015

3.3 Other resources

3.3.1 Software

ParaView 4.3.1 was used to visualise some of the data

12

Chapter 4

Data and system

This section describes the system in which the prototype is
supposed to exist, as well as the data that shall be compressed.

4.1 System

The purpose of the research was to find a practical compression method
for a set of precomputed lightmaps. The flow-chart in fig. 4.1 shows how
the related data is created by the editor and later used in the game. The
two steps labeled compress and decompress will be the primary focus, but
obviously they need to conform to the greater system. It is important
to note that this is not a constant flow as the left part (until File) is
executed during development while the right part is executed when a
scene is loaded in the game.

Editor

Compressor File Client

Server

Bake

Compress Decompress

Stream

Figure 4.1: Data flow from editor to runtime

This allows the compression to be arbitrarily complex while the decom-
pression must occur in near real-time. It also means that the compressed
file-size needs to be small enough to be distributed on a physical media or
via downloads. Furthermore, the decompressed data shall be of similar
quality to the original file.

There are two restrictions defined for the allowed distortion in the decom-
pressed data. Firstly it must not needlessly reduce spikes in illumination

13

Computer Science June 11, 2015

such as when a surface normal is parallel to the incoming light and hav-
ing the highest incoming energy. Secondly it must not blend between
neighbouring elements as the irradiance textures are very low resolution:
one pixel of irradiance data can represent several square meters.

4.1.1 Client capabilities

The client side has an existing framework for streaming linear media such
as video and animation data.

4.1.2 Server capabilities

As the data will be used on a GPU it may be possible to use 3D-textures
or texture arrays to store the data, as the baked data uses a format that
can be used directly as a texture.

4.2 Data structure

The baked output data from the editor contains three different parts
that describe the lighting in a scene. The first two parts are similar
to traditional lightmaps in the sense that they are textures, and contain
irradiance magnitude and direction [15], while the last part contains light
probe data and is used to illuminate dynamic objects [8]. The total size
of this data, across the whole game equals roughly 200 MB per timepoint.
This is split across 42 lighting systems each being roughly 5 MB big. As
the lighting systems are loaded dynamically as the player moves in the
game, they need to be compressed dynamically.

As noted in the previous section, one pixel of irradiance data can repre-
sent several square metres. This is an optimisation based on the assump-
tion that nearby areas will receive similar amounts of indirect lighting,
and can be very realistic with just linear interpolation. This small tex-
ture size brings an overhead of pointers and unnecessary context switches
on texture unitsI when used in a renderer. In order to alleviate this issueI graphics hardware

dedicated to textures the smaller textures are stored in a texture atlas which combines many
smaller textures. Each part inside this atlas is then called a chart.

4.2.1 Irradiance

The irradiance map contains a texture of values describing the incident
irradiance in a point. This map can use either the OpenGL format
RGB9E5II for a size of 32 bits per pixel, or one IEEE 754 half-floatII 9 bits of mantissa

per element, and a
shared 5-bit exponent 14

Computer Science June 11, 2015

(16 bits) per channel for a total size of 64 bits per element.

Figure 4.2: 384 frames of temporal irradiance data rendered with z
as the time-axis, and red channel plus alpha scaled by
intensity.

An example of data for one system can be seen in fig. 4.2. Both the red
and alpha channels are based on the intensity in the point. As can be
seen there are many points that are very low intensity throughout most of
the day only being illuminated briefly at certain points, as well as many
points that are permanently illuminated with almost constant intensity
throughout the day. Though hard to see, there are also areas that are
briefly illuminated at various points during the day and therefore fade in
and out. As can be seen, a large part is constantly empty as well.

To get a clearer picture of the data structure fig. 4.2 was flattened to
produce fig. 4.3 on the following page. Though there may be points that
are actually used but never illuminated it gives a more defined view of
the data. Noteworthy is the very inefficient atlas which utilises between
half and two thirds of the texture. This is an execution optimisation
since texture units are more effective on texture dimensions that are a
power of two, but makes it harder to fill the atlas as each time a chart
overflows the atlas it needs to be at least doubled in sizeI. I the logic behind this

behaviour is the same
as fanout fill-rate in a
B+-tree4.2.2 Irradiance direction

As a complement to the irradiance the data also contains textures which
can either show the aggregated direction for incoming “white” irradiance
or per-channel direction for incoming red, green or blue irradiance. The
data represents the direction as one vector [X, Y, Z,W] per element, or

15

Computer Science June 11, 2015

Figure 4.3: Flattened view of system illumination where white pixels
represent an element that is non-zero at least once, and
black pixels are always empty. The grey background was
added to emphasise the borders and is not part of the
texture.

three vectors per element if stored per color channel. This makes the data
either 32 bits or 96 bits per element stored in one or three 2D-textures.

In fig. 4.4 on page 19 an example of these directional textures can be seen.
The base scene is the same as the one used in fig. 4.2 on the preceding
page though visualisation is a lot different. In the scene used here the
direction seems to be mostly the same, but detailed inspection shows
small differences between the channels that could be caused by nearby
coloured surfaces or coloured light-sources.

4.2.3 Probe data

The probe data contains sampled irradiance in a set of points, repre-
sented using Spherical Harmonics coefficients. These may be stored ei-
ther as first-order (L1) or second-order (L2) harmonics. In both cases,
the data is separated per color channel. This data does not have a spatial
representation like the other parts, instead being just a list. It is also
much smaller, accounting for on average 3 % of the total data-size in the
data-set used.

16

Computer Science June 11, 2015

Spherical harmonics can be calculated and stored in many ways, but the
general one used for lighting is as a series of [function, coefficient] pairs,
which extends the Fourier series to three dimensions. The Fourier
series allows approximation of a function f using as a series of function
such that f̂ = C1 × b1 . . . Cn × bn where C is a coefficient and b is a base
function. The exact same approach can be applied in three dimensions.
This allows very compact representation of illumination in an area that
can be computed using a simple dot product.

In the case of L1 coefficients there are four floats per channel. These
represent an ambient term and the three cardinal basis functions: x, y,
z, for a total size of 48 bytes [8].

In the L2 case there are 9 flats per channel for a total of 108 bytes per
probe. These represent the same bases as the L1 spherical harmonics
and then five more quadratic bases: xy, yz, xz, z2, x2 − z2 [8].

4.2.4 Data summary

Part Dimensions Format/element Size

Irradiance X-Y-T RGB9E5/FP16 (RGBA) 32 or 64 bits

Direction X-Y-T RGBA8 32 or 96 bits

Probe data Index-T FP32 48 (L1) or 108 (L2) bits

Table 4.1: Summary of the input data that shall be compressed. The
dimensions shown relate to the full data-set, though each
element may also have a specific format

4.3 The data in detail

Remembering the data from section 4.2 on page 14 it may be important
to reiterate that large amounts of data is empty, as was shown in both
fig. 4.2 on page 15 and fig. 4.3 on the preceding page. It is however hard
to quantify exactly how large this emptiness is purely from looking at
the images. Another approach for visualising this empty space can be
seen in fig. 4.5 on page 20.

This image shows us an interesting phenomenon. Despite the irregular-
ities shown in fig. 4.2 on page 15 the empty space is constant overtime
as each line in both diagrams has a constant coloring with no shifts.
Though the diagram does not answer the question of where the empti-
ness is, it is not an extreme assumption that it is the same elements that
are empty constantlyI. Furthermore, the pictures show very clearly that I Consider the oppo-

site: if elements are
only sometimes occu-
pied, the figure implies
that there are always
as many elements that
turn on as that turn
off. This is highly un-
likely.

there are borders that will be good for segmentation, shown as ridges in
the textures. For example, in both images there is high potential around
row/column 60, 120 and 190.

17

Computer Science June 11, 2015

As the emptiness is time-invariant, further visualisation can be done for
a single slice which can be seen in fig. 4.6 on page 20. The spatial
distribution is the exact match of a column above, and the cumulative
distribution shows two important things. Firstly is that almost exactly
half of the texture space is empty. Secondly is that the spikes shown are
very prominent, and surrounded by areas with mostly constant empti-
ness. This was also shown though not as clearly both above and in fig. 4.2
on page 15. Since these form a plateau-like pattern it may prove itself
very suitable for segmentation. As a very basic example, consider cut-
ting away the 20 % that is constantly empty throughout the whole atlas,
and then reiterating the process. Just the first step, in this case, could
remove 36 % of the area.

4.4 Compression requirements

Dimensionality: 2D/3D

Compression type: lossless primarilyII see section 4.1 on
page 13

Complexity:

Compression: arbitrary

Decompression: close to real-time

Architecture: software and hardware

Adaptivity:

� Data structure may change

� Resolution will change

� Interframe changes will roughly be symmetric IIII The changes be-
tween frame 1 and
2 will be as large as
between frame 2 and 3

� Frame density will not be symmetricIII

III The frame density
will be higher where
the lighting is changing
fast

4.4.1 Target compression ratio

The target compression ratio is a minimum size reduction of 85 % based
on the redundancy and size requirements. This is slightly better than
what general compression tools can achieve. While the ratios vary be-
tween data-sets, LZMA achieves at least 85 % compression ratio, DE-
FLATE achieved a minimum of 80 %, bzip2 achieves 75 % and normal
Windows ZIP (a DEFLATE-algorithm) achieves 65 %.

18

Computer Science June 11, 2015

Figure 4.4: 384 frames of temporal irradiance direction data sepa-
reted per channel with z as the time-axis, and each arrow
being colored by direction where (x, y, z)=̂(r, g, b). Un-
like in fig. 4.2 on page 15 the unused texture space was
removed here.

19

Computer Science June 11, 2015

Figure 4.5: Spatial and temporal distribution of empty elements

Figure 4.6: Spatial distribution of emptiness and total cumulative
emptiness.

20

Chapter 5

Literature review:
Compression algorithms

This section contains a review of common compression algo-
rithms, as well as their strengths and weaknesses.

5.1 Overview

As shown in section 2.2 compression of general data is a thoroughly
researched area, with more and more specialised algorithms being created
for new types of digital data [16]. Many of these however are based on
previous research or show a lot of similarities, and so algorithms are often
grouped both based on family and on type. To further complicate matters
some compression algorithms are used primarily to prepare data for other
algorithms to make them more effective, and some do not perform any
compression on their own [10].

A general grouping of algorithms is as lossy or lossless [10]. A lossy al-
gorithm is domain-specific and attempts to reduce data-size by removing
less important content. This may for example be inaudible parts of an
audio signal such as very high or low frequencies, which means that the
decompressed data file will not be equal to the source file. A lossless
algorithm on the other hand uses more general approaches in order to
reduce redundancy in files while preserving all the content, so that the
original data may be reconstructed completely. It is important to note
that this grouping is not forced – a lossy algorithm may be general and
a lossless algorithm may be domain-specific but it is harder to achieve.

When studying lossless algorithms there are two different groups: entropy
coding algorithms and dictionary coding algorithms. Entropy coding uses
probabilities to assign few bits to common symbols and more bits to un-
common symbols in order to achieve a shorter average length [17]. Dic-

21

Computer Science June 11, 2015

tionary coding reduces redundancy in a file by finding repeated sequences
of symbols and replacing them with dictionary references [12, 13].

The main difference between the two groups is that a dictionary compres-
sion uses knowledge about the domain and may compress based on words,
pixels, and other domain entities, while entropy encoding is domain-
agnostic and operates on bits and bytes [10].

There are also a few other algorithms that transform and polish the
data in various ways, and they will be discussed more in section 5.1.3 on
page 25.

As this is temporal image data it also makes sense to look at various video
and image compression methods to reduce data size. Video compres-
sion algorithms use a combination of intra-frame compression techniques
adapted from image-compression and inter-frame compression which at-
tempt to reduce the redundancies between frames, as well as general
techniques that are not domain-dependent [16].

5.1.1 Entropy encoding

Entropy, when talking about compression, is a measure of the randomness
of a message. Formally it was defined by Shannon as

H(x) = −
N∑
i=1

pi log2 pi

with pi being the probability of symbol i and gives the average number of
bits needed to encode a symbol in x. This number is also the theoretical
minimum BPC (bits per character), and algorithms are often compared
based on how close to this measure they get [10]. The measure for an
actual encoding is given by

Ĥ(x) =
N∑
i=1

bi × pi

where bi is the number of bits used to encode symbol i. Because of
this statistical limit it is often more relevant to discuss entropy coding
algorithms in terms of balance between speed/performance and efficiency
rather than only pure efficiency.

Huffman coding works by encoding each symbol using an integer number
of bits which is the optimal encoding if each symbol is encoded separately
[17]. It is however easy to prove that it is only globally optimal if all
probabilities are on the form 2−k, k ∈ N, e.g. 50 %, 25 %, 12.5% and
so on, which would correspond to the [0, 10, 110, . . .] alphabet. A set of
symbols with probabilities P = [.9, 0.05, 0.05] however would at best be

22

Computer Science June 11, 2015

encoded with [0, 10, 11] which has an average BPC of 1.1 compared to
0.57 BPC which is the optimal case.

Arithmetic coding is a generalisation of Huffman coding which codes
based on sequences of symbols instead of encoding each symbol sepa-
rately. This creates a more compact representation at the cost of a more
expensive algorithm, which allows BPC-levels close to the theoretical
limit [18]. Another approach to arithmetic coding called range encoding
operates on bytes instead of bits and therefore gains a slight increase in
speed with lower efficiency, though the approach is the same.

The general idea of the arithmetic coding is the range [0, 1) is allocated
according to the probability for all symbol to occur, so that a symbol
with 50 % chance has for example the range [0, 0.5) [18]. When a sym-
bol is read from the stream, that symbols range is subdivided in the
same manner, so that the symbol from earlier would occupy the range
[0, 0.25). This continues for a certain depth before a tag from center of
the last encoded range is emitted, followed by a codeword indicating end
of sequence.

Consider the alphabet [1, 2, 3] with the probabilities
[
1
2
, 1
3
, 1
6

]
, and encode

the sequence 1123. The workflow and nesting of ranges can be seen in

fig. 5.1. In the example, the final tag would be
7
36

+ 5
24

2
= 0.2013889.

0 1
2

1

5
6

2

1

3

0 1
4

5
12

1
2

0 1
8

5
24

1
4

1
8

1
6

7
36

5
24

Figure 5.1: Visualisation of arithmetic encoding using nested ranges.

Several variations of the arithmetic coding algorithm exist that attempt
to improve performance. The main approaches used in these focus on
reducing the computation complexity of the original implementation by
using lookup-tables, shifts and additions instead of multiplications and
divisions as they require fewer instructions. However, none of these has
been able to reach the speed of Huffman coding though beating it in
compression [19].

A further improvement upon the arithmetic coding called asymmetric
numeral systems was proposed in 2009, and claims to combine (or even
beat) the speed of Huffman coding with the compression rates of arith-

23

Computer Science June 11, 2015

metic coding [20]. It borrows both from arithmetic coding and Huffman
coding to create a related set of algorithms that allow a trade-off to be
made between speed and efficiency [21]. The original paper however has
not received much scientific interest though it has been discussed in com-
pression communities and several implementations have been proposed.
Neither of these can verify the claim of beating Huffman coding speeds,
though several report equal speed and higher efficiency [22, 23, 24, 25, 26].

5.1.2 Dictionary coding

The most common type of dictionary coding is the Lempel-Ziv family of
algorithms, based on two algorithms by Abraham Lempel and Jacob Ziv
in 1977 and 1978 [10]. Sometimes a distinction is made between these
two as separate families, as they differ in the way they use dictionaries
[12, 13]. The basic operation of any of these algorithms is to iterate over
an input stream and attempting to replace incoming data with references
to data somewhere else in order to reduce size.

The algorithm proposed in 1977, called LZ77 or LZ1, uses a sliding win-
dow with a character buffer extending both backwards (history) and
forward (preview) to match incoming characters to previous characters
[12]. If a match is found between the preview and the history, the algo-
rithm outputs how far back the match is found (offset), and how many
characters can be matched from that point (length). By definition of the
algorithm, the length can be larger than the offset, which means that the
sequence is repeated fully or partially. This means that the algorithm
encodes based on the local context but has no global knowledge.

By contrast, the algorithm proposed in 1978, called LZ78 or LZ2, uses
a global dictionary of sequences. The algorithm begins with an empty
dictionary and an empty sequence, and then iterates over each character
in the stream [13]. If the character plus the previous sequence can be
found in the dictionary, the character is appended to the sequence and
a new character is retrieved. If it cannot be found in the dictionary, a
dictionary reference to the sequence is sent to the outputI together withI as the sequence must

have been in the dictio-
nary to reach this stage

the character. The concatenated string is then added to the dictionary,
and the sequence is emptied.

Three very succesful derivatives from the LZ-family are the LZMA, DE-
FLATE and LZP variants. LZMA is a combination of arithmetic coding
from 5.1.1 on page 22, Markov Chains and LZ77, making very efficient
use of the forward and backward references. This requires a large dictio-
nary and memory usage but it compares well to many other algorithms
especially when accounting for performance [27, 28, 29]. A similar com-
posed algorithm is DEFLATE which uses LZ77 and Huffman coding to
achieve slightly less compression at higher speeds [28, 29]. LZP on the

24

Computer Science June 11, 2015

other hand is a simple algorithm which aims to reduce the length of the
offsets in LZ77 by using hash-tables instead of references back into the
stream [30]. It has overall poor compression performance on its own
but can be used as a preprocessor for other algorithms to improve their
performance by more than 10% [31].

Another noteworthy derivative from LZ77 is the LZ4 codec which has de-
compression speeds an order of magnitude faster than LZ77, but also less
effective compression [28, 29, 32]. It improves efficiency by using variable
length coding, restrictive referencing and lookup tables to improve speed
at the cost of compression rate [33].

Sequitur or byte pair coding is a dictionary coding which uses recursive
substitution to remove repetitions in a file. It analyses the input sequence
for either matches against previous substitutions, else against the current
encoded string. The algorithm follows two basic rules for coding:

Rule I no set of neighbouring symbols shall appear
more than once in the stream

Rule II each grammatical rule must apply more
than once [34]

In order to achieve compression comparable to other algorithms the gram-
mar is not generally included in the encoded file. Each original instance
of a rule is instead left unchanged, and the second time it occurs a rule
descriptor is written detailing where a previous occurence can be found.
The third time it occurs a reference to the rule is stored. This scheme is
used as otherwise any gains from the compression will be consumed by
overhead from terminators and the grammar.

5.1.3 Other algorithms

Burrows-Wheeler transform is a data-manipulation algorithm which can
be used to sort data so that it is more compressible by algorithms that
rely on proximity for compression. It works by rotating and sorting data
multiple times, creating a quasi-lexical ordering in the data [35]. This
algorithm uses the same logic as second-order language modeling, which
is that certain characters are likely to be in sequence most of the time
[36]. An example is that a “he” string will likely be preceded by a ‘t’, so
by sorting on the “he” all the ‘t’s will group together on the other end
of the rotation.

Run-length encoding is a very simple encoding algorithm which encodes a
source into runs, which contain a symbol and how many of that symbol
that occurred in sequence [37]. For example, the word bookkeeping
could be encoded to b(o,2)(k,2)(e,2)ping. It is therefore most suited to

25

Computer Science June 11, 2015

sources with long runs, for example in quantized images or fax-messages.
It can also be used for coding data sources which are mostly empty.

5.1.4 Video and image compression algorithms

As mentioned above video and image compression algorithms are gen-
erally lossy and in order to achieve a good quality this is unwanted.
However, there are some methods that are lossless, or can be both.

One such algorithm is the discrete cosine transform (DCT) which encodes
a source into a frequency domain, which by itself does not compress. It
is however a common step in a chain with other algorithms [38]. It is
used for example in JPEG-compression together with quantization and
rounding to discard high-frequency content. A related algorithm is the
wavelet transform, which transforms signals into a time-scale domain
instead of a frequency domain [39]. The DCT is used by normal JPEG
coompression, while a wavelet-based method is used in lossless JPEG.

There are also various different algorithms that encode symbols based
on their differences. Two common algorithms are the differential pulse
code modulation and predictive coding. The basic idea behind either of
these algorithms is to use a heuristic function to calculate a predicted
value for the current symbol from the previously encoded symbols, and
then encodes only the difference from that predicted value [40, 41]. This
can both reduce the impact of noise in the decoded signal and make
compression more efficient. Variants of this algorithm is used in lossless
JPG and PNG.

Moving on to video compression, section 4.1.2 on page 14 the decom-
pression will happen on GPUs with access to 3D-textures. A large part
of the video specific compression is related to reducing redundancy be-
tween frames. Often these algorithms use various blocking or prediction
techniques to account for moving objects, but in the case of this data
all datapoints will be static and change slowly. If the keyframes can be
selected to allow linear interpolation between them, a very cheap imple-
mentation of inter-frame compression can be constructed using the GPU,
if the linearity can be guaranteed.

This linearity can be guaranteed by using piecewise linear approximation
such as the approach by Hamann et al for either a given number of points
or a given error tolerance [42]. Another similar approach was also used
by Jones to compress distance fields [43] to cull data with a forward
predictor. Both of these approaches compress by removing redundancy
that can be approximated from other data-points.

26

Chapter 6

Literature review: Image
segmentation and data
structures

This chapter describes image segmentation algorithms as well
as data structures that are relevant for storing the data.

6.1 Image segmentation

Image segmentation is the act of separating parts of images by some
heuristic in order to make it easier to interpret. A major application
for image segmentation is as a processing step in computer vision, such
as in robots and cameras where foreground and background need to be
separated. It is also commonly used in image and video editing programs
and used for example as “magic lasso” tools and similar. As with the
compression algorithms there are a few basic families of algorithms, and
many algorithms are actually combinations of the basic algorithms.

Graph usage for image segmentation is a well-studied area, with two main
types of algorithm. The common idea is to treat some or all pixels in the
grid as nodes in a graph, and then use graph-theory or other methods to
segment the image.

The classic example of graph-based segmentation is the max-flow/min-
cut method, though modern variations on this method are called min-
imum energy segmentation. The algorithm starts off with atleast two
points that represent the foreground and background called source and
sink, and all nodes in the picture are marked with the probability of being
either foreground or background [44]. Then all edges are weighted based
on the difference between the related nodes, such that edges between
nodes with different belonging are ‘weak’ or ‘low energy’, and nodes with

27

Computer Science June 11, 2015

the same alignment have ‘strong’ or ‘high-energy’ edges. Lastly, the al-
gorithm finds the cut in the graph which minimises the energy, which
will also be the cut which separates the most foreground pixels from
background pixels.

A merging approach can also be used for segmentation, where the al-
gorithm starts with each pixel being a node. The edges between pixels
are then assigned a weight based on the dissimilarities of the nodes it
connects. The algorithm will then iterate over the edges and merge
nodes into segments wherever the edge heuristic meets the requirements
for merging [45]. There are many variations on the edge traversal and
heuristics, for example by considering more than the two current nodes,
so that more optimal solutions are found.

Two other techniques based on clustering for segmentation uses machine
learning to segment images, by grouping them based on similarity only.
Two major algorithms of this type exist, k-means and mean shift. K-
means is an iterative algorithm that starts by placing k centroids in the
feature-spaceI and assigning all elements to the nearest centroid [46]. TheI e g in the RGB col-

orspace centroids are then moved to the centre of mass of all associated elements,
and then all assignments are updated. The algorithm is finished when
no elements change centroid during an iteration. Each cluster is then a
segment.

Mean-shift is similar to k-means, but does not need pre-placed centroids
[47]. The algorithm iterates over all points, and for each point it finds
the center of mass for the local areaII instead of the closest centroid. TheII in feature-space

search area is moved towards this center of mass, and a new center of
mass is calculated. This process is repeated until the center of mass does
not change. At the end, all points that end their search in the same
location are said to belong to the same cluster.

Edge detection algorithms are used in image-processing to find edges
and changes in gradients. Most edge detection models are based on
first and second order derivatives, quantifying the rate of change at a
given position, though some are more algorithmic in nature [48]. Often
these models are applied using as a convolution filter over the image, or
as a multiplication in the frequency domain. A well-known first-order
kernel is the Sobel operator, and a well-known second-order kernel is
the discrete laplacian operator.

A very näıve form of segmentation can be done using thresholds. Such
an approach might label all elements below a certain thresholdIII as be-III for example, the av-

erage intensity longing to one layer and all other pixels to another, or split the range
of intensities into multiple thresholds to create several segments. Other
approaches use a more local approach by considering the local neighbour-
hood when selecting layers, so that local variations are not completely
lost [49].

28

Computer Science June 11, 2015

6.2 Data structures

When optimising execution for high-performance applications a very
common pitfall is the usage of an object-oriented design (OOD) pat-
tern for everything. On modern computers there is a large difference in
access speeds for data in the processor cache, which can be several hun-
dred processor cycles [50]. Having to repeatedly fetch data from RAM
into the processor cache will introduce large performance drains to trans-
fer data, and it is therefore imperative to optimize the data structures
to reduce this.

This general goal can be split into two rules:

Rule I Keep necessary data in memory for as long
as possible

Rule II Avoid loading unnecessary data whenever
possible

These rules are formulated as an alternative to OOD called data-oriented
design (DOD). The basic paradigm for data-oriented design is to rotate
data-structures by 90 %. This is based on the object-oriented paradigm
of storing self-contained objects in arrays, while a data-oriented approach
would merge the data from several objects into a multi-object container.
The first type is often called array of structures while the data-oriented
approach is called structure of arrays.

This change is most easily seen in code listings 6.1-6.2 and fig. 6.1 on the
following page. The purpose of this is to streamline access to parts that
may be used together more often. In the example, the data in a Monster
would likely be modified per-object in the client but when preparing data
for the server such as by creating matrices, it may be more efficient to
do so per-type rather than per-object.

Listing 6.1. Object-oriented design

1 struct Monster

2 {

3 vec3 m_position;

4 vec3 m_rotation;

5 bool m_isAngry;

6 };

7 Monster monsters[10];

Listing 6.2. Data-oriented design

1 struct Monsters

2 {

3 vec3 m_position[10];

4 vec3 m_rotation[10];

5 bool m_isAngry[10];

6 };

7 Monsters monsterList;

As the purpose of this work is to improve performance, this is an im-
portant consideration when choosing data structure. In relation to the
flowchart in section 4.1 on page 13 it is also important to note that the
most important factors are search and insertion as those are the only

29

Computer Science June 11, 2015

i 0 1 · · ·

M[i] P R A P R A · · ·

i 0 1 · · ·

P[i] P P · · ·

R[i] R R · · ·

A[i] A A · · ·

Figure 6.1: Memory-layout of object-oriented approach (left) and
data-oriented approach (right). Note that the indexes
and number of elements is constant, but the data for
each monster has been “rotated”.

operations during execution.

6.2.1 Tree structures

Tree structures are ubiquitous in computer science, and are useful for
fast retrieval and insertion. Trees are defined either by their branching
factorI and their dimensionality. For example, a binary tree in threeI how many children

each node has dimensions always splits the volume in two partitions, along one of the
cardinal axes. A ternary tree would divide the space into three partitions
for each level, and so on. For higher branching factors it becomes possible
to create many alignments of the partioning, such as partioning in either
a cross-pattern or as four slices in a quaternary tree.

In games design three types of trees are commonly used for spatial par-
tioning: binary trees, quadtrees, octrees and k-d-trees.IIII The quick reader

may notice that the
first three correspond
to 21, 22, and 23.

A binary tree has a branching factor of two, and can be used for normal
ordering, and is often applied for depth-sorting and ordering data that is
only comparable in one dimension.

A quadtree is a specific type of quaternary tree splitting at the centerpoint
[51]. This means that each layer has four times as many nodes as the
previous layer, but they are all exactly a quarter of the parents size. The
common use cases for quadtrees is for searching in a 2D-area such as a
map or for image processing.

Octrees are three-dimensional data structures that are used for searching
in 3D-areas such as in a volume, as well as for raycasting and density
textures [52].

k-d-trees finally are an extension of the binary trees into k dimensions,
by cycling through the dimensions when subdividing [53]. k-d -trees are
commonly used for nearest-neighbour search as the canonical implemen-
tation subdivides through the median at each point, creating a balanced
and very efficient search tree.

Tree structures are dependent on the data for complexity, but are usually

30

Computer Science June 11, 2015

O(n log n) for searching and insertion.

6.2.2 Arrays, lists and maps

The most basic data structures is the array. Arrays are linearly allocated
data structures where elements are packed tightly without any gaps, such
as the left example in fig. 6.1 on the facing page. Arrays have static index-
ing and assignment complexity, O(1), and linear complexity for all other
operations, O(n). An array is generally of static size, but most languages
have built-in support for dynamic arrays for example the std::vector

in C++ or ArrayList in C#. This allows dynamic growing, insertion and
removal in linear time, which is not possible at all in normal arrays. The
other arrays shown on the right side of fig. 6.1 on the preceding page are
an example of parallel arrays, where data at the same index in different
arrays has some form of relation.

A hash map or hash table is a data-structure optimized for fast lookup
for data with a known distribution, by mapping input keys to output
values to create key-value pairs [54]. The key is used as the input to a
hashing function which converts it to a numeric index which points to the
actual value. Hash maps are often used for lookups where searches are
primarily done using non-numeric keys, such as strings. The complexity
for searching in a hash map is O(1), as most common implementations
uses an array for the actual data.

6.3 File structure

The file format is also important for optimisation, as unnecessary data in
the file increases the file size, as well as increases complexity of loading
and storing. There are two common paradigms for file structure: header-
based and chunk-based.

Header-based file structures use a header which contains all the informa-
tion needed to parse the data in the file. This header usually contains
what type of file it is, metadata such as mime-type, what encodings it
uses and so on. If the data has multiple parts, it will also contain in-
formation about where to find each part. This can make finding specific
data in files very efficient as only the header and the relevant data needs
to be loaded.

Chunk-based file structures on the other hand encapsulate each separate
part alone with all the relevant info. This is a common format for exten-
sible file-types, as a file-reader may simply skip unknown chunks and read
whatever it can. It is used for example in PNG where custom chunks can

31

Computer Science June 11, 2015

be used to store metadata such as animations or unicode-text. Because
of this it is especially useful if all the data will be loaded at once.

32

Chapter 7

Implementation

This section describes the implementation used in the final com-
pression pipeline in the prototype.

7.1 Compression algorithm selection

Referencing back to section 4.4 on page 18 there are a few strong candi-
dates from the literature review. First the choices in the 2D domain will
be discussed and then the third domain will be discussed.

As noted in section 5.1.1 on page 22 the speed of Huffman coding is
consistently better than arithmetic coding [19], while arithmetic coding
has better compression. The basic compression tests made in section 4.4
on page 18 show LZMA (arithmetic) as top, and then DEFLATE (Huff-
man) as second not very far behind. As speed is very important the
logical choice is therefore to use Huffman coding as a startpoint, and if
more effective compression is needed and there is execution time available
arithmetic coding can be investigated further. Though the asymmetric
numeral systems seem to provide both good compression and good speed
it seems too experimental still to use in this type of product.

There are a few more alternatives when looking at the dictionary coding
alternatives. Sequitur coding, while interesting, has very few implemen-
tations and even on text files it does not perform well, with compressed
sizes 3-4 times larger than other dictionary coding algorithms [31]. As
such, the choice of algorithm then stands between a LZ77 and LZ78 type
algorithm. Looking at the data-set shown in fig. 4.2 it is easy to see
that the both local and global similarity is high. However, LZ78 requires
a global dictionary with all sequences, and as the symbols in this data
have varied size it may be hard to optimise without compressing each
data separately. In the case of LZ77 and its derivatives there is a more
logical blocking approach, and increased local referencing.

33

Computer Science June 11, 2015

As such, the choice of standard compression algorithm becomes Huffman
with LZ77 or one of its derivatives. Looking again at fig. 4.2 on page 15
it is also clear that there is a lot of redundancy in the temporal domain,
which is unnecessary. In order to reduce this a video or image com-
pression approach may be useful to reduce redundancy. Since the data is
already in a compressed format that can be used natively, it may be good
for performance to leave it in that format. It is also important to note
that the transforms with trigonometric functions (DCT, wavelet, and so
on) are computationally expensive. This leaves the predictive coding and
Burrows-Wheeler transform. However, the Burrows-Wheeler transform is
based on language models and requires structured data such as text. It is
unlikely that this will be applicable to the lighting data, which leaves the
predictive coding approach. However, as this is a performance-centred
project it is important to not add parts unless they are required.

As mentioned in section 4.1.2 on page 14 the data will be used on a GPU,
which has hardware accelerated interpolation and texture lookups. It will
therefore be easy to interpolate between different frames in this context,
and if frames can be interpolated within allowed error margins they can
be removed altogether. The forward predictor or linear approximation
methods mentioned in section 5.1.4 on page 26 can be used to cull some of
the frames. As our goal is to interpolate however, the linear approxima-
tion method will be used. It may also be possible to use some intraframe
segmentation technique to reduce the empty space that is stored, but at
the cost of more expensive compression and decompression.

To recapitulate, the proposed compression algorithm will use a three-step
algorithm with a linear approximation, one step with LZ77 that can
be expanded into one of its derivatives depending on the requirements,
and Huffman coding to reduce entropy in the final source. This can
be seen in fig. 7.1. There is also an unresearched optional step with
image segmentation or similar between steps one and two that can be
researched further if necessary.

Raw data

Linear approximation

Image segmentation

LZ77 or a derivative Huffman coding

Compressed data

Figure 7.1: Original proposed compression pipeline

34

Computer Science June 11, 2015

7.1.1 Existing implementations and relative gains

Based on the abundance of existing open source implementations of com-
pression algorithms that are both well-documented and tested by many
users, it was decided that it was better to use an available library instead
of developing a new one. This will also allow more focus to be invested
into the more advanced methods as opposed to repeating what others
have already done. The proposal suggested a LZ77-type algorithm, and
there are many available open source libraries for Python. The choice
was made to use Python-LZ4 as it is well-documented, fast and requires
only one line of code for both compression decompression. This makes it
easy to replace with another library in the future.

It was also decided that the linear approximation method shall be a cen-
tral part of the final compression pipeline, with the addition of image
segmentation. The image segmentation part was deemed important as
each atlas contains charts for many different objects. These objects may
shade each other, and obviously have different facing. Therefore they be-
have differently, and by utilizing this fact when doing the approximation
the errors will be lower if the image segmentation is well-aligned with the
charts.

This segmentation approach will also make the predictive coding ap-
proach more effective, as the pixels in each segment should be similar to
each other. It will therefore also be included to compress each segment.

7.2 Image segmentation algorithm and data

structure selection

Starting with the choice of image segmentation algorithm, it is clear that
neither of them meets the only explicit requirement of creating straight
cuts. This is an implementation detail though and it is likely that most of
the algorithms can be adapted for this. It may however not be possible to
adapt k-means or mean shift as they work only in the feature-space, and
hybridizing it to make straight cuts in the spatial domain may prove to
be difficult if not impossible. Similarly the näıve thresholding approach
while locally adaptive will likely also be hard to create cuts with, as well
as being likely to behave badly around the edges due to the rapid shifts
in intensity.

This narrows the choice to edge detection, as well as the graph-based
choices. The edge detection approach combines well with the observa-
tions in section 4.3 on page 17 but edge detection filters suffer from
discontinuity problems which requires reparation and merging to create
a workable and straight edge. On the other hand, it is well aligned with

35

Computer Science June 11, 2015

the goal of reversing the atlas creation process, as this is the most likely
area to have strong edges. Strong edges from an edge detection algorithm
can also likely be found on the border to empty space.

The graph-based choices can also be seen as aligned with the goal, and
in particular the min-cut max-flow algorithm. The merging approach
though more sophisticated wants to create large areas, and this may not
necessarily align well with the overall goals of reversing the atlasing.

A näıve distinction for the max-flow min-cut algorithm may be that ev-
erything empty is background, and everything non-empty is foreground.
The explicit goal of the algorithm then becomes to cut along the longest
border between empty and non-empty data. Combined with the above
requirement, it can be further condensed to: cut along the line or column
with the most change between empty and non-empty space. This can be
done recursively or globally to segment the image. Defining it as a max-
imisation also makes it easy to combine with edge detection, as edges are
strongest where the difference is high.

The choice of recursive or global segmentation is relevant for the choice
of data-structure, or the reverse. However, an approach combining edge
detection with a variation on the max-flow min-cut algorithm seems to
be the most logical choice. Remembering the spikes and ridges in fig. 4.5
on page 20 and fig. 4.6 on page 20 it is clear that the approach may
provide good results, but none of the spikes go all the way up. If a cut
was made in these graphs and a recursive approach is used, the opposite
graph would be reduced in height and increased in lengthI. As it mayI Consider that a cut

in one graph is ro-
tated 90°in the oppo-
site graph. This means
that cutting the hori-
zontal graph will half
the size, but double
the length of the ver-
tical graph if the two
parts are visualised af-
ter each other

create a higher relative emptiness, it could increase the efficiency of the
cuts.

This leads towards a binary partitioning scheme, but this is not necessary.
It could be possible to use the best column and best row as the center-
point for a non-square quadtree. There is however one big drawback:
consider the case where the best horizontal line is optimal on one side of
the best vertical cut, but suboptimal on the other. Doing it in two steps
would allow the best cut from both of them, and then the next cut could
be made on each side and hopefully be better in total. The next decision
then is between the binary tree and the k-d -tree.

The search characteristics of the trees is not very important for the pur-
poses here, as the primary use for the tree is to aid the subdivision and
for the data-structure. However, as the segmentation algorithm will par-
tition in two dimensions, the idea fits more with the k-d -tree than the
binary tree, and as such it will be used.

The temporal segmentation will then occur within each of the leafs, and
a good data-structure needs to be chosen for this data. The data to be
stored will consist of key-value pairs where the key will be the temporal
index of the data, and the value will be the actual data. This lends

36

Computer Science June 11, 2015

itself to a hashmap, but hashmaps are not very memory efficient as each
possible hash-result needs to have an associated slot in the map. As the
temporal indices will be integers of low magnitude, it is likely that this
will become problematic and introduce an unnecessary memory overhead.
In the example data used there are 384 temporal segments originally, and
even if the subset of used frames remains high, the relative overhead will
quickly become large. A more reasonable solution would be to use either
a parallel array approach, sorted by the key. As the keys will be used in
sequence, the index can be stored and only increased when necessary.

The next step used will be the actual compression step, which will use
the predictive coding from PNG, but substitute LZ4-compression for
DEFLATE which is normally used in PNG. This is done per slice. If the
final data size is too big the whole stack of slices can be compressed as
well, at the cost of decompression time.

The last step is storing the actual data. There is no major reason not
to choose either, but as the uncompressed data sets might still be quite
large it would be logical to only load them as needed, which is easier to
do in a header-based format.

To recapitulate, the algorithm shall consist of three steps as shown in
fig. 7.2. The first step is the image segmentation step, which subdivides
the spatial domain using a specialized max-flow min-cut algorithm. The
output from this step is used to build a k-d -tree, to logically separate the
data parts. Each leaf in the k-d -tree is then segmented in the temporal
domain, using a linear approximation approach to find the important
keyframes. Each of the keyframes is then first filtered with predictive
coding before being compressed using LZ4. Lastly, all data is written to
a file using a header-based file structure. There is also the optional step,
shown with dashed lines, that can be used if needed but will come at a
performance cost.

Raw data

Image segmentation Temporal segmentation Compression per slice Compression per stack

Compressed data

Figure 7.2: Updated proposed compression pipeline

It is also important to remember that the lightprobe data mentioned
in section 4.2 on page 14 does not have a spatial representation. This
also means that the spatial algorithms proposed here are not applicable.
However, as the data-size is very small, this will not have a huge impact
on the final file-size.

37

Computer Science June 11, 2015

7.3 The full pipeline

The full algorithm that was implemented is shown in fig. 7.3, with an-
notations showing both step and algorithm. Though not shown, the
decompression process is an exact reversal process, by first decompress-
ing each slice individually, interpolating the temporal slices that are not
stored, and then merging all segments to recreate the original texture
frame.

KD-Tree generation Compression

Raw data

Image segmentation
Edge detection &
max-flow min-cut

Temporal segmentation
Linear approximation

Slice compression
PNG-filtering

and LZ4

Compression per segment
LZ4 or DEFLATE

Compressed data
Header fol-

lowed by data
Decompression

Figure 7.3: Final compression pipeline

7.4 K-D-tree

The k-d -tree suggested for usage is a modified version of the standard
algorithm, as it is not generated using the normal rules of median-point-
selection. It is instead recursively partitioned using the segmentation
algorithms detailed below. This segmentation is done first for the spatial
representation of the data, and then in the temporal domain.

7.4.1 Image segmentation

The image segmentation algorithm iterate over all rows and columns in
the data-set, finding the max value of the heuristic function (7.2) on
the next page, as shown in (7.1) on the facing page. There are two
parts to the heuristics function. The first part is based on first-order
edge detection, and the second part is näıve max-flow min-cut approach
discussed in 7.2 on page 35. A cut is made along the dimension and at
the position where the heuristics function is maximized. To limit the
depth a lower threshold τs is also used and cuts are only made when the
heuristic value is greater than this value.

38

Computer Science June 11, 2015

Let:
CR and CC be the number of rows and columns
IR and IC be the sets of rows and columns

Then:

Hs(I)axis,index = Iargmax
D,x

{hs(ID,x, ID,x+1) | x < CD, D ∈ [R,C]} (7.1)

hs(ID,x, ID,x+1) =
∑

i∈ID,x, hj∈ID,x+1

 |i− j| if i 6= 0 ∧ j 6= 0
1 if i = 0⊕ j = 0
0 if i = 0 ∧ j = 0

(7.2)

After initial tests, it was noted that there were some issues with detect-
ing borders where the majority of the points fall into the third case.
Therefore, another part was added to the heuristics function, as shown
in (7.3)- (7.4). The purpose of the function e(· · ·) is to normalize the
border length, so that lines that pass through mostly empty space are
equally likely to be borders.

hs(ID,x, ID,x+1) = e(ID,x, ID,x+1) ·
∑
· · · (7.3)

e(ID,x, ID,x+1) =
card({p | p ∈ (ID,x + ID,x+1) , ||p|| = 0})

card(ID,x)
(7.4)

Three further optimisations were added to improve the algorithm. The
first optimisation was to limit the segmentation based on the size of
segments, so that already small segments are not subdivided. A length
of at least 20 pixels in both directions was deemed good enough. The
second optimisation is to force cuts to be made a certain distance from the
borders. This value was chosen to be 5 pixels. The third optimisation was
to use the median cut-point, if multiple points have the same heuristics
value. This is based on the assumption that the median point is most
likely to give a centered cut. These measures were implemented as the
algorithm generated a lot of very thin segments otherwise, as shown in
fig. 7.4 on the next page, leading to very large trees.

The threshold for cutting was very important for generating good cuts.
τs = 0.8 provided a good trade-off between depth and accuracy of cuts.
Running the final algorithm creates the tree shown in table 7.1 on the
following page. The matching segmented image can be seen in fig. 7.5 on
page 41.

39

Computer Science June 11, 2015

Figure 7.4: Initial segmentation without size-requirements.

Generated tree

Root

1

2

3

Leaf

Leaf

3

4

5

Leaf

Leaf

Leaf

4

5

Leaf

Leaf

Leaf

Leaf

Leaf

Position Axis

220 V

210 H

66 H

130 V

66 V

198 H

134 H

188 V

192 H

Table 7.1: Tree generated from spatial segmentation with nodes
numbered by depth. Generated with threshold = 0.8.

40

Computer Science June 11, 2015

Figure 7.5: One frame of irradiance data matching the above tree,
padded along the cuts to separate the segments so that
all data is visible.

7.4.2 Temporal segmentation

The intended algorithm for use was the piecewise linear approximation
by Hamann et al [42], however after further investigation it was deemed
too computationally difficult to implement for this data. The primary
difficulty was adjusting the algorithm for multiple data-sets changing in
tandem, but possibly in different directions.

The algorithm was therefore simplified significantly to use a discrete in-
tegral of the root-mean-square-error as a measure of the change between
two frames. It iterates over all frames while calculating the heuristics
function (7.5) on the following page for the current frame and the next.
When the integration value becomes greater than the threshold τt the
previous frame is selected as a keyframe and the integral is reset to zero.
This reversing behaviour means that the total number of comparisons is
greater than the total number of frames.

41

Computer Science June 11, 2015

Let:
CF be the total number of frames
τt be the temporal segmentation threshold

Then:

Ht(f)k = fmax{i|h(i)≤kτt} for k ≤
⌊
ht(CF)

τt

⌋
(7.5)

ht(k) =

k∑
i=0

RMS (fi+1 − fi) (7.6)

RMS(f) =
1

Afi

√∑
p ∈ f

p2 (7.7)

The reason for this choice is that if fk is at the beginning of a climb,
and point fl is at the peak, then it is more likely that the threshold is
broken when comparing fl to fk than when comparing fk to fj. fk is
therefore used as a keyframe so the interpolation is done along the rise.
This however comes at the drawback of the function possibly leaping over
small valleys and peaks. An attempt at visualisation of this algorithm
can be seen in fig. 7.6.

0 5 10 15 20

0

0.5

1

1.5

Figure 7.6: Example plot of algorithm with reversal. The colors indi-
cate a segment of the algorithm, with reset of the integral
when changing color. Not representative of real data.

However, the algorithm suffers from one big drawback when considering
the circular nature of the data. The basic algorithm starts from frame
0 and iterates forward, which means that all spatial segments will start
with frame 0 as a keyframe. However, there may be other solutions that
both provide better interpolation and less keyframes. The algorithm was
therefore extended to try all points in the range [−30, 30) as start-points,
instead of starting with 0. The best out of all these start points is then

42

Computer Science June 11, 2015

used for the actual tree-generation. If no more than 1 keyframe is needed,
a random point is chosen in the interval.

As with the image segmentation, the threshold τt is important for the
result. Mathematically, assuming that frame distribution is/will be uni-
formI, the overall noise introduced by interpolation can be estimated us- I We know this is false,

it is one of the premises
for this entire project.
But let’s assume it’s
true.

ing ê shown in (7.8). This equation however has three unknown variables:
τt, ê and K. The equation can instead be rewritten to create eq. (7.9).
This equation shows that the ratio between average noise and threshold
is proportional to the fraction of keyframes over all frames and segments.
Considering that this fraction should be similar to the fraction of frames
left, it can be assumed that it is linearly inversely proportional with the
target compression ratio, e.g. 1−T . This reduces the unknown variables
by one. Finally, the equation can again be rewritten to (7.10) giving τt
as a function of average noise. The reverse function (7.11) shows another
obvious property: if the target compression is increased, then the noise
must increase proportionally.

Let:
ê be the average error
K be the number of keyframes
T be the target compression rate
S be the number of spatial segments
τt be the temporal segmentation threshold

Then:

ê =
K

C · S
× τt (7.8)

ê

τt
=

K

C × S
(7.9)

τt(ê) =
ê

1− T
(7.10)

ê(τt) = τt × (1− T) (7.11)

For example, if the average noise is allowed to be 0.002 then τt becomes
0.013̄. Initial testing showed that this actually gave a much higher com-
pression rate and noise, as the distribution is not uniform spatially or
temporally. Reducing the threshold down to 0.01 improved the results,
with a still higher compression rate than the target. One full run with
τt = 0.01 can be seen in fig. 7.7 on the following page, and a full visualisa-
tion with both spatial and temporal segmentation can be seen in fig. 7.8
on the next page. More information about the errors can be found in
chapter 8 on page 49.

43

Computer Science June 11, 2015

Figure 7.7: Graph of the max of all heuristic channels used for tem-
poral segmentation, plotted against the comparison num-
ber.

Figure 7.8: 3D-visulsation with bounding boxes for each interpola-
tion system at the leaf-level, and with the same tree as
above in the spatial domain. Note that the colors match:
the first cut is made in the red domain, which is the root
bounding box.

44

Computer Science June 11, 2015

7.4.3 The heuristic function

The heuristics function shown above is the one used in the prototype,
but other heuristic functions were also tested.

Three different functions based on first-order derivatives were tested. The
one that that is used above is roughly equal to the difference between the
current frame and the next frame, which is a first-order delta. However,
the difference between the previous keyframe and the next frame was also
tested, which allowed a higher threshold while creating a more uniform
distribution as the integral scales with distance. The third heuristics
function tested attempted to combine the two other approaches as the
difference between the previous keyframe and the next frame, divided by
the distance between the frames. The idea was to react slower to slow
change, but maintain the reaction speeds of setup two. However, the
results in both cases produced more and larger artifacts.

An attempt was also made to use a second-order delta, as the algorithm
only needs to insert keypoints whenever there is a change of direction
rather than a change of value. However, due to the increased computa-
tional complexity of a numerical second-order delta the algorithm was
terminated after running for over one hour.

7.5 Compression

7.5.1 PNG

The PNG-standard consists of two compression parts. The first part is
the filter, which is briefly mentioned in section 5.1.4 on page 26. The
actual predictive coder used in PNG actually consists of five different
coders, and the best one is chosen for each part of the data [55]. Of
special note is the Paeth filter, which is an adaptive filter by itself [56].
The output from the filter is a token for the filter used, followed by the
filtered data.

The PNG-filters encode based on bytes, but is designed to handle differ-
ent formats by always operating on matching bytes from different parts.
For example, if a normal RGB8-format is usedI, the red is always matched I one byte per channel

with red in the previous pixel. If a RGB16-format was used, the first red
byte would be matched against the other first red byte. When referencing
other bytes, it is assumed that the data is unfiltered or already defiltered.
The reference system used can be seen in fig. 7.9 on the following page.

The filters are shown mathematically in eq. (7.12) on the next page-
(7.17) on the following page, though some deviations were made from
the standard. In canonical implementations the unavailable parts are

45

Computer Science June 11, 2015

C B

A R/F

Figure 7.9: The references used in PNG-filter operations.

treated as 0, for example references to the previous line while working
on the current line. In this implementation however, the filters that use
unavailable data on the same row fall back to the first filter until data
is available. Similarly, the filters that need a previously encoded row
to function properly do not apply for the first row, in order to reduce
computational complexity.

Let:
R be the original data
A be the previous match
B be the match in the previous row
C be the previous matching byte in the previous row
F1−5 be the filter functions
Fo be the filtered data

Then:

F1 = R (7.12)

F2 = R−A (7.13)

F3 = R−B (7.14)

F4 = R−
⌊
A+B

2

⌋
(7.15)

F5 = R− min
|p−x|

|p− x|

{
x ∈ {A,B,C}
P = A+B − C

(7.16)

Fo = fargmin
x
{
∑

(fx)} for x ∈ [1, 5] (7.17)

7.5.2 LZ4

The LZ4 compression used the open-source Python implementation of
LZ4. The data from a filtered segment was compressed by the LZ4-
library, before being written to the file.

7.6 File format

The file structure is header-based format as described in chapter 6 on
page 27. The general structure and sizes of the header can be seen in
fig. 7.2 on the facing page. In the original implementation, the data was
appended to the header, but it was made more robust by moving the
data to its own file.

46

Computer Science June 11, 2015

Header

Spatial info

Size

Position

Type:

Node (0)

Axis

Leaf (1)

No_ Keyframes

No_ Frames

Keyframe data

Key

Buffer

offset

Length

Length of

parts

Type Count Total size

per spatial segment

Short 2 4

Short 2 4

Byte 1 1

Byte 1 1

Short 1 2

Short 1 2

per keyframe

Short 1 2

Long 1 4

Long 1 4

Long 4 16

Table 7.2: The structure of the file header

7.7 Decompression of a frame

As noted in section 7.3 on page 38 the decompression works in reverse
of the compression algorithm. Whenever a lighting system is loaded,
the full header is parsed into memory. When using the data, there are
two distinct functions that need to run at regular intervals. The first
function updates the interpolation texture, which contains interpolation
information for every pixel in the textures. The second function updates
the textures that are interpolated between to calculate the actual texture
value.

The interpolation texture is updated each time the function is called,
no matter the time-point. The interpolation value is the fraction of time
that has passed between the previous keyframe and the current keyframe,
for the particular segment. This value is calculated using function (7.18).
The interpolation value is adjusted using modulo logic to make sure the
interpolation is seamless when passing midnight.

Let:
T be the current time
Tp be the previous keyframe time
Tn be the next keyframe time

Then:

δ(T) =
T − Tp
Tn − Tp

(7.18)

The other two textures are updated only updated when a segment has
a keyframe at exactly the current timepoint. When this occurs, that

47

Computer Science June 11, 2015

keyframe and the next keyframe are loaded from the file, decompressed
and added to their corresponding textures. A way of mentally visualising
this is to see the two textures as the top and bottom of a box. The
interpolation textures then form loading bars, that rise at different speeds
for different parts of the texture. When a loading bar is full, that part
of the textures need to be updated.

The LZ4 decompression is done using the same open source library that
was used for compression, and the data is then passed to the defiltering
function. The defiltering operation works exactly like the filtering opera-
tion, with sign changes only. This can be seen by comparing (7.19)-(7.23)
to (7.12)- (7.16) on page 46. The choice of defiltering function is based
on which token was included the stream.

Let:
F be the defiltered data
R1−5 be the defiltering functions

Then:

R1 = F (7.19)

R2 = F +A (7.20)

R3 = F +B (7.21)

R4 = F +

⌊
A+B

2

⌋
(7.22)

R5 = F + min
|p−x|

|p− x|

{
x ∈ {A,B,C}
P = A+B − C

(7.23)

(7.24)

48

Chapter 8

Results

This chapter describes prototype, the compression ratios achieved
and various error measurements.

8.1 The prototype

A standalone prototype was created implementing the full algorithm, as
well as tools for visualising the algorithm in various ways. It has been
tested on three different data-sets, and the results have been visually and
quantitatively measured. As this is a performance improvement special
care was taken to optimise the prototype as well as possible, to get good
measurements of execution speed.

8.1.1 Execution speed

The compression time is proportional to the size of the data to compress,
and tests showed that increasing texture size by a factor 4 increased com-
pression times by roughly a factor 2. The decompression times were so
fast that it was not possible to measure accurately using Python, but the
time figures were always less than one hundredth of a second. The largest
bottleneck was reading from the hard drive, which could cause noticeable
hitches. However, this is a task that can be done asynchronously, and
should not be an issue in a real implementation. Recalling the loading
bar analogy from section 7.7 on page 47, it is possible to use it as actual
loading time to preload the upcoming keyframes.

Though the performance gain by going from Python to C++ is hard
estimate, some extrapolation can be done from other benchmarks. Based
on various benchmarks a reliable performance gain going from Python
3 to C++ is at least one order of magnitude [57, 58]. However, the

49

Computer Science June 11, 2015

prototype was written in Python 2 to be able to access visualisation
tools that are not ported to Python 3 yet. There are few benchmarks
available for this conversion, but the average performance of Python 3
is equal to Python 2 with varying case-to-case performance [59]. It is
therefore likely that a C++ implementation reliably will run below 1ms
per frame.

8.1.2 Compression efficiency

The efficiency of the compression was measured simply as the size reduc-
tion, which is the ratio between compressed and uncompressed sizes as
shown in (8.1). As noted several times before, the size of the lightprobe
data is an order of magnitude smaller than the other data, and is not
included in the compression measurements. As shown in 8.1.2 the are
very high for all three datasets.

Rc =
Compressed size

Uncompressed size
(8.1)

Data-set Original size Compressed size Efficiency Lightprobe size

1 479.1 MB 7.4 MB 98.45 % (+7 MB)

2 1873 MB 22.3 MB 98.77 % (+147 MB)

3 480.0 MB 5.0 MB 98.96 % (+41.7 MB)

Table 8.1: The compression efficiency for three data-sets. The origi-
nal and compressed sizes both exclude the lightprobe data,
shown in a separate column.

8.2 Visual and quantitative errors

The data was compared to the original data using two different three dif-
ferent measures. The simplest measurement was a purely visual inspec-
tion by constructing a difference image between the interpolated image
and the original data. This difference image was animated over the full
time-span, and checked for points with high-intensity. Mostly, the dif-
ference was so small it was not visible, but a few errors were seen where
a few pixels in an area would deviate large from the area mean, being
smoothed out by the local mean. Two examples of the comparison can
be seen in fig. 8.1 on the facing page.

In order to quantitatively measure the errors, the Root-Mean-Square-
Error (RMSE) and Signal-To-Noise ratio (SNR) measurements were
used. The equations for these can be seen in (8.2)-(8.3) on the next
page. The RMSE measurement is almost equal to the average error, but
as the sum is before the root, it has a weighing feature which gives greater
importance to big differences than small.

50

Computer Science June 11, 2015

Figure 8.1: Original, interpolated and difference image at t = 105
and t = 132, respectively. Dataset 2 was too large to
visualize.

SNR instead measures a relative strength of the original signal compared
to the noise signal [60]. As the name implies, a large result implies that
the signal is much stronger than the noise, while a small results implies
that the noise is large relative to the original image, i e there is a large
distortion.

These two measurements are visualised in fig. 8.2 on page 53. Due to the
difference in data-types it was not possible to visualise all the data parts
together. As the irradiance data is the most notable part, it was chosen
for the visualisation.

Let:
O be the original image
I be the interpolated image

Then:

RMSE =

√
1

card(pixels)

∑
p∈pixels

(Op − Ip)2 (8.2)

SNRDB = 10 log10

|I|2

|I −O|2
(8.3)

Though the best measure of actual quality would be looking at an actual
rendering, we can draw some conclusions from the graphs in fig. 8.2 on
page 53. For the RMSE-measurement, the original data exists mostly
in the range [0, 1]. Compared to this, the error ranges in the first two
sets are very low. The third one however has a very spiked pattern, and
it has several visible defects in the data. Upon inspection, the spatial
subdivision did not create a clear enough cut, and instead cut the whole

51

Computer Science June 11, 2015

upper left quadrant as a single segment as can be seen in 8.3 on page 54.

The SNR-graphs show that the interpolation for the second data-set has
very little noise, shown by both the large SNR-value as well as the sta-
ble plot. It is notable that this graph also has the most concentrated
RMSE-values. This data was too large to visualize, but inspection of the
generated tree showed that the keyframes had a globally uniform distri-
bution, as well as segments of similar size. The other two graphs have
much lower SNR-values, and more dynamic RMSE-values.

It is likely that the quantitative errors are very dependent upon the
quality of the spatial and temporal segmentations as the most well-formed
tree also had the best error measurements. It follows from this that the
parameters of the algorithm need to be tuned for each data-set to achieve
a good segmentation in both dimensions.

One way of achieving this could be by using an adaptive tuning algorithm,
which uses the two metrics above to decide whether a generated tree is
good enough. However, this falls outside the scope of this report. While
the parameters could technically be set manually for each data-set, the
primary users will not be programmers. Though this may not necessarily
be a bad thing in itself, it requires a lot of implementation details to be
expressed in non-technical terms to allow tuning by other means than
trial-and-error.

52

Computer Science June 11, 2015

Figure 8.2: Measured error as RMSE and SNR for the three data-sets
above.

53

Computer Science June 11, 2015

Figure 8.3: Full segmentation of data-set three, similar to the tree
shown in chapter 6 on page 27

54

Chapter 9

Discussion

9.1 Compliance with the project require-

ments

The results are very satisfying, both in relation to the original goal, but
also in relation to the goals that have been set as the project progressed.
Though jokingly talking about 99 % compression as a goal during the
project, it was almost achieved in the end. This is far above what con-
ventional compression methods achieve, which was the original point of
comparison. There is a point to be made about the lightprobes not being
included. However, the same approach minus the segmentation should
be usable, and achieve almost as good compression efficiency.

There is no doubt that the data can be compressed effectively enough
using the methods proposed in this report, and there is still a lot of
room for improvement that could not fit within the time or scope of the
thesis. One part that could cause issues is the inclusion of scripted lights,
which could not be used due to technical limitations. Including them will
introduce new and interesting challenges, and may need the original data
to be generated at very high temporal resolution to accurately represent
lights turning on or off.

As shortly noted at the end of chapter 8 on page 49 there is also a concern
of allowing not only dynamics inside each data-set, but also letting each
data-set achieve its optimal compression. This can then be tied into the
general workflow of the tool. Though most of it was deemed to be too
specific to include in this report, there are several ways of generating
the original data, and it needs to be possible to switch these without
modifying the compression pipeline. The intended usage is that the tool
shall run directly after data generation, but if tuning is required it quite
likely needs to be decoupled from the baking step.

55

Computer Science June 11, 2015

9.2 Special results and conclusions

As noted above the achieved compression ratio is far above what was
expected based on what conventional tools achieve. Having the ability
to achieve these high compression ratios allows a great deal of tuning to
be done in either direction. There is lots of room for both increasing the
thresholds used, depending on the importance of the data.

9.3 Project development

There are many different directions to expand both the primary sub-
ject and the secondary subjects that were touched upon in this project.
The first part would be looking at more heuristics function inside an ac-
tual implementation - it may be possible to present the end-user with
a few different heuristic functions that have different characteristics, or
implement an adaptive approach. There are also many opportunities for
improving the compression algorithm and finding more effective ways of
representing data, and this is an area I would like to explore in the fu-
ture. But this approach should also be possible to apply for more areas
in software development, and generalizing the concept may prove useful.

Another part that could be improved upon is to explore how large the
degradation can be before it is noticed. As this project purely used
indirect lighting data, it might be possible to degrade it a lot before
anything is noticed, and this is also an area I would like to explore. There
is research comparing different shading models, but not degradation of
the same model. Consider for example the graphic settings in a game -
they are optimal for performance but it is entirely possible that it is not
the most cost-effective settings, in relation to consumer enjoyment.

9.4 Reflection on own learning

The biggest takeaway on my own knowledge from this project is that for
this project, I had no knowledge. The concept of data-oriented design,
which is very important for modern games development was essentially
unknown. Equally unknown as the implementation of compression al-
gorithms, as well as both the mathematical and implementation back-
ground for spherical harmonics. Similarly I had never had the need to
implement according to a specification. As such, a large amount of time
of this project has been spent reading, in the region of 200-250 articles
and papers. This is something that has not been a large part of my edu-
cation, as there have been only two courses in the last three years where
it has been relevant or required.

56

Computer Science June 11, 2015

Though the number of 200-250 is not a good measure of learning, it
perhaps highlights a lack of experience in finding good scientific material.
Though there is room for self-criticism in this, I also felt that I did not
have tools to find the information I needed. Throughout my three years at
university I can remember only once that there has been any information
about actual information search, which was during this thesis project.

Similarly, I feel that I lack the scientific methodologies I would have
needed here. I originally planned to use a literature review and a decision-
matrix approach for information review and choosing a comp algorithm.
When decision matrix was not applicable I did not have any more tools
to apply for this situation. While research about tools can be seen as
part of the course, Rome was not built in a day. Having at least heard
about different methods would have been useful.

There is a disconnect between I feel what has been expected from me
from DICE compared to Örebro University. Indeed, the productivity
throughout this project has been hindered by trying to fulfil them both
while also not doing (too much) overtime. It has however been a great
relief to have four different persons - three at DICE and one at ORU
- that push and pull in various directions, and it forces a goal-oriented
mindset. The biggest difference is that the university does not seem to
care what is done as long as long as a results chapter is produced. On the
opposite end, when working in a scrum-team there is a certain pressure
to make progress, but no definite goal. Though a bit exaggerated, this is
an observed difference that for me was very startling at first but showed
a reasonable middle road in the end. The university mindset creates
a habit of obsessing over every detail to create a perfect result, which
is alleviated by always having to progress. On the other hand, it also
prevents too large deviations from the plan, and keeps everything moving
in the same direction.

57

Bibliography

[1] Simon Niedenthal. Complicated shadows: the aesthetic significance
of simulated illumination in digital games. Department of Inter-
action and System Design, Blekinge Institute of Technology, Karl-
skrona, 2007.

[2] James T Kajiya. The rendering equation. In ACM Siggraph Com-
puter Graphics, volume 20, pages 143–150. ACM, 1986.

[3] David S Immel, Michael F Cohen, and Donald P Greenberg. A
radiosity method for non-diffuse environments. In ACM SIGGRAPH
Computer Graphics, volume 20, pages 133–142. ACM, 1986.

[4] Bui Tuong Phong. Illumination for computer generated pictures.
Communications of the ACM, 18(6):311–317, 1975.

[5] James F Blinn. Models of light reflection for computer synthe-
sized pictures. In ACM SIGGRAPH Computer Graphics, volume 11,
pages 192–198. ACM, 1977.

[6] Peter-Pike Sloan. Stupid spherical harmonics (SH) tricks. Compan-
ion Paper, 2008. Game Developers Conference 2008.

[7] Jason Mitchell, Gary McTaggart, and Chris Green. Shading in
valve’s source engine. In ACM SIGGRAPH 2006 Courses, pages
129–142. ACM, 2006.

[8] Ravi Ramamoorthi and Pat Hanrahan. An efficient representation
for irradiance environment maps. In Proceedings of the 28th annual
conference on Computer graphics and interactive techniques, pages
497–500. ACM, 2001.

[9] Robin Green. Spherical Harmonic Lighting: The Gritty Details.
Sony Computer Entertainment America, 1 edition, 2003.

[10] Sebastian Deorowicz. Universal lossless data compression algo-
rithms. PhD thesis, Silesian University of Technology, 2003.

[11] C. E. Shannon. A mathematical theory of communication. Bell
System Technical Journal, 27(3):379–423, 1948.

XI

Computer Science June 11, 2015

[12] Jacob Ziv and Abraham Lempel. A universal algorithm for sequen-
tial data compression. IEEE TRANSACTIONS ON INFORMA-
TION THEORY, 23(3):337–343, 1977.

[13] Jacob Ziv and Abraham Lempel. Compression of individual se-
quences via variable-rate coding. IEEE TRANSACTIONS ON IN-
FORMATION THEORY, 24(5):530–536, 1978.

[14] Guy E Blelloch. Introduction to data compression. Computer Science
Department, Carnegie Mellon University, 2001.

[15] Andrey Iones, Anton Krupkin, Mateu Sbert, and Sergey Zhukov.
Fast, realistic lighting for video games. IEEE computer graphics
and applications, 23(3):54–64, 2003.

[16] Meilin Yang, Ye He, Fengqing Zhu, et al. Video coding: Death is
not near. In ELMAR, 2011 Proceedings, pages 85–88, Sept 2011.

[17] D.A. Huffman. A method for the construction of minimum-
redundancy codes. Proceedings of the IRE, 40(9):1098–1101, Sept
1952.

[18] Ian H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic
coding for data compression. Commun. ACM, 30(6):520–540, June
1987.

[19] Amir Said. Comparative Analysis of Arithmetic Coding Compu-
tational Complexity. In Data Compression Conference, page 562,
2004.

[20] Jarek Duda. Asymmetric numeral systems. CoRR, abs/0902.0271,
2009.

[21] Jarek Duda. Asymmetric numeral systems as close to capacity low
state entropy coders. CoRR, abs/1311.2540, 2013.

[22] Charles Bloom. Understanding ANS. http://cbloomrants.

blogspot.fr/2014/01/1-30-14-understanding-ans-1.html,
2014. Series of blog posts, 13 parts. Last accessed April 23, 2015.

[23] Fabian Giesen. rANS notes. https://fgiesen.wordpress.com/

2014/02/02/rans-notes/, 2014. Blog post. Last accessed April 23,
2015.

[24] Google Codec Developers. New entropy coding: faster
than Huffman, compression rate like arithmetic. https:

//groups.google.com/a/webmproject.org/forum/#\protect\

kern-.1667em\relaxtopic/codec-devel/idezdUoV1yY, 2014.
Forum discussion. Last accesed April 24, 2015.

[25] Yann Collet. Finite State Entropy. (December 16), 2013. Blog post.
Last accessed April 23, 2015.

XII

http://cbloomrants.blogspot.fr/2014/01/1-30-14-understanding-ans-1.html
http://cbloomrants.blogspot.fr/2014/01/1-30-14-understanding-ans-1.html
https://fgiesen.wordpress.com/2014/02/02/rans-notes/
https://fgiesen.wordpress.com/2014/02/02/rans-notes/
https://groups.google.com/a/webmproject.org/forum/#\protect \kern -.1667em\relax topic/codec-devel/idezdUoV1yY
https://groups.google.com/a/webmproject.org/forum/#\protect \kern -.1667em\relax topic/codec-devel/idezdUoV1yY
https://groups.google.com/a/webmproject.org/forum/#\protect \kern -.1667em\relax topic/codec-devel/idezdUoV1yY

Computer Science June 11, 2015

[26] Matt Mahoney. Data Compression Programs. http://

mattmahoney.net/dc/. Subheading: FPAQ. Last accessed April
23, 2015.

[27] Igor Pavloc. LZMA specification. http://www.7-zip.org/sdk.

html. Last accessed April 22, 2015.

[28] Matt Mahoney. 10 GB compression benchmark. http://

mattmahoney.net/dc/10gb.html, 2015. Last accessed April 22,
2015.

[29] Maximum Compression. Summary of the multiple file compression
benchmark tests. www.maximumcompression.com/data/summary_

mf.php. Last accessed April 22, 2015.

[30] Charles Bloom. Lzp: A new data compression algorithm. In Data
Compression Conference, pages 425–425. IEEE Computer Society,
1996.

[31] Matt Mahoney. Data compression programs. http://mattmahoney.
net/dc/, 2015. Last accessed April 22, 2015.

[32] Yann Collet. Lz4: Extremely fast compression algorithm, 2013.
Documentation page. https://code.google.com/p/lz4/. Last ac-
cessed April 23, 2014.

[33] Yann Collet. Lz4 explained. Blog, may 2011. http://

fastcompression.blogspot.se/2011/05/lz4-explained.html.
Last accessed April 25, 2015.

[34] Craig G Nevill-Manning and Ian H Witten. Compression and expla-
nation using hierarchical grammars. The Computer Journal, 40(2
and 3):103–116, 1997.

[35] M. Burrows and D. J. Wheeler. A block-sorting lossless data com-
pression algorithm. Technical report, HP Software Research Center,
1994.

[36] Joseph Yossi Gil and David Allen Scott. A bijective string sorting
transform. CoRR, abs/1201.3077, 2012.

[37] S. Golomb. Run-length encodings (corresp.). Information Theory,
IEEE Transactions on, 12(3):399–401, Jul 1966.

[38] Andrew B Watson. Image compression using the discrete cosine
transform. Mathematica journal, 4(1):81, 1994.

[39] Ronald A DeVore, Björn Jawerth, and Bradley J Lucier. Image
compression through wavelet transform coding. Information Theory,
IEEE Transactions on, 38(2):719–746, 1992.

XIII

http://mattmahoney.net/dc/
http://mattmahoney.net/dc/
http://www.7-zip.org/sdk.html
http://www.7-zip.org/sdk.html
http://mattmahoney.net/dc/10gb.html
http://mattmahoney.net/dc/10gb.html
www.maximumcompression.com/data/summary_mf.php
www.maximumcompression.com/data/summary_mf.php
http://mattmahoney.net/dc/
http://mattmahoney.net/dc/
https://code.google.com/p/lz4/
http://fastcompression.blogspot.se/2011/05/lz4-explained.html
http://fastcompression.blogspot.se/2011/05/lz4-explained.html

Computer Science June 11, 2015

[40] JB O’neal. Predictive quantizing systems (differential pulse code
modulation) for the transmission of television signals. Bell System
Technical Journal, 45(5):689–721, 1966.

[41] P. Elias. Predictive coding–i. Information Theory, IRE Transactions
on, 1(1):16–24, March 1955.

[42] Bernd Hamann and Jiann-Liang Chen. Data point selection for
piecewise linear curve approximation. Computer Aided Geometric
Design, 11(3):289–301, 1994.

[43] Mark W Jones. Distance field compression. Journal of WSCG,
12(1-3):199–206, 2004.

[44] Z. Wu and R. Leahy. An optimal graph theoretic approach to
data clustering: theory and its application to image segmentation.
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
15(11):1101–1113, Nov 1993.

[45] P.F. Felzenszwalb and D.P. Huttenlocher. Efficient graph-based
image segmentation. International Journal of Computer Vision,
59(2):167–181, 2004.

[46] J. MacQueen. Some methods for classification and analysis of mul-
tivariate observations. In Proceedings of the Fifth Berkeley Sympo-
sium on Mathematical Statistics and Probability, Volume 1: Statis-
tics, pages 281–297, Berkeley, Calif., 1967. University of California
Press.

[47] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach
toward feature space analysis. Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on, 24(5):603–619, 2002.

[48] John Canny. A computational approach to edge detection. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, PAMI-
8(6):679–698, Nov 1986.

[49] Shimon D Yanowitz and Alfred M Bruckstein. A new method for im-
age segmentation. In Pattern Recognition, 1988., 9th International
Conference on, pages 270–275. IEEE, 1988.

[50] Digital Illusions CE. Introduction to data-oriented programming.
Presentation slides. http://www.dice.se/wp-content/uploads/

2014/12/Introduction_to_Data-Oriented_Design.pdf. Last ac-
cessed May 20, 2015.

[51] Raphael A. Finkel and Jon Louis Bentley. Quad trees a data struc-
ture for retrieval on composite keys. Acta informatica, 4(1):1–9,
1974.

[52] Donald Meagher. Geometric modeling using octree encoding. Com-
puter graphics and image processing, 19(2):129–147, 1982.

XIV

http://www.dice.se/wp-content/uploads/2014/12/Introduction_to_Data-Oriented_Design.pdf
http://www.dice.se/wp-content/uploads/2014/12/Introduction_to_Data-Oriented_Design.pdf

Computer Science June 11, 2015

[53] Jon Louis Bentley. Multidimensional binary search trees used for
associative searching. Communications of the ACM, 18(9):509–517,
1975.

[54] Donald E. Knuth. The Art of Computer Programming, Volume 3:
(2Nd Ed.) Sorting and Searching. Addison Wesley Longman Pub-
lishing Co., Inc., Redwood City, CA, USA, 1998.

[55] Mark Adler, Boutell Thomas, John Bowler, et al. Portable Network
Graphics (PNG) Specification. Specification V1.2, W3C, 2003.

[56] Alan W. Paeth. II.9 - IMAGE FILE COMPRESSION MADE
EASY. In JAMES ARVO, editor, Graphics Gems II, pages 93 –
100. Morgan Kaufmann, San Diego, 1991.

[57] Debian Project. The Computer Language Benchmarks Game.
http://benchmarksgame.alioth.debian.org/u64q/compare.

php?lang=python3&lang2=gpp, June 2015. Last accessed June 2,
2015.

[58] JuliaLang.org. Julia Benchmarks. http://julialang.org/

benchmarks/. Last accessed June 2, 2015.

[59] Brett Cannon. Python 3.3: Trust Me, It’s Better
Than Python 2.7. In PyCon 2013, 2013. Presenta-
tion slides. http://speakerdeck.com/pyconslides/python

-3-dot-3-trust-me-its-better-than-python-2-dot-7-by-dr-

brett-cannon. Last accessed June 2, 2015.

[60] Philippe Hanhart, Marco Bernardo, Pavel Korshunov, et al. HDR
image compression: a new challenge for objective quality metrics.
In 6th International Workshop on Quality of Multimedia Experience
(QoMEX), number EPFL-CONF-200191, 2014.

XV

http://benchmarksgame.alioth.debian.org/u64q/compare.php?lang=python3&lang2=gpp
http://benchmarksgame.alioth.debian.org/u64q/compare.php?lang=python3&lang2=gpp
http://julialang.org/benchmarks/
http://julialang.org/benchmarks/

	Abstract
	Sammanfattning
	Acknowledgement
	List of Figures
	List of Tables
	Introduction
	Background
	Project
	Goals
	Requirements

	Background
	Lighting in games
	Compression
	Definitions

	Methodology and tools
	Methods
	Literature review: Compression
	Literature review: Image segmentation and data structures

	Tools
	Other resources
	Software

	Data and system
	System
	Client capabilities
	Server capabilities

	Data structure
	Irradiance
	Irradiance direction
	Probe data
	Data summary

	The data in detail
	Compression requirements
	Target compression ratio

	Literature review: Compression algorithms
	Overview
	Entropy encoding
	Dictionary coding
	Other algorithms
	Video and image compression algorithms

	Literature review: Image segmentation and data structures
	Image segmentation
	Data structures
	Tree structures
	Arrays, lists and maps

	File structure

	Implementation
	Compression algorithm selection
	Existing implementations and relative gains

	Image segmentation algorithm and data structure selection
	The full pipeline
	K-D-tree
	Image segmentation
	Temporal segmentation
	The heuristic function

	Compression
	PNG
	LZ4

	File format
	Decompression of a frame

	Results
	The prototype
	Execution speed
	Compression efficiency

	Visual and quantitative errors

	Discussion
	Compliance with the project requirements
	Special results and conclusions
	Project development
	Reflection on own learning

	Bibliography

